Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Oral Investig ; 26(4): 3613-3625, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35066687

RESUMO

OBJECTIVES: To assess the effects of benzydamine and mouthwashes (MoWs) containing benzydamine on different stages of Candida albicans biofilm: adhesion, formation, persistence, and regrowth (if perturbed). MATERIALS AND METHODS: C. albicans CA1398, carrying the bioluminescence ACT1p-gLUC59 fusion product, was employed. Fungal cells were exposed for 1', 5', or 15' to 4 different benzydamine concentrations (0.075 to 0.6%) to 2 mouthwashes (MoWs) containing benzydamine and to a placebo MoW (without benzydamine). Treated cells were tested for adhesion (90 min) and biofilm formation (24-h assay). Next, 24- and 48-h-old biofilms were exposed to benzydamine and MoWs to assess regrowth and persistence, respectively. The effects of benzydamine, MoWs containing benzydamine, and placebo on different biofilm stages were quantified by bioluminescence assay and by the production of quorum sensing (QS) molecules. RESULTS: Benzydamine and MoWs containing benzydamine impaired C. albicans ability to adhere and form biofilm, counteracted C. albicans persistence and regrowth, and impaired a 48-h-old biofilm. Some of these effects paralleled with alterations in QS molecule secretion. CONCLUSIONS: Our results show for the first time that benzydamine and MoWs containing benzydamine impair C. albicans capacity to form biofilm and counteract biofilm persistence and regrowth. CLINICAL RELEVANCE: Benzydamine and MoWs containing benzydamine capacity to affect C. albicans biofilm provides an interesting tool to prevent and treat oral candidiasis. Likely, restraining C. albicans colonization through daily oral hygiene may counteract colonization and persistence by other critical oral pathogens, such as Streptococcus mutans, whose increased virulence has been linked to the presence of C. albicans biofilm.


Assuntos
Benzidamina , Candida albicans , Benzidamina/farmacologia , Biofilmes , Antissépticos Bucais/farmacologia , Streptococcus mutans
2.
Hum Mol Genet ; 31(6): 839-849, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34596681

RESUMO

Glycogen-synthase kinase 3 (GSK3) is a kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK3 has been linked to several disease conditions such as fragile X syndrome (FXS). Recent evidences demonstrating an increased activity of GSK3 in murine models of FXS, suggest that dysregulation/hyperactivation of the GSK3 path should contribute to FXS development. A likely possibility could be that in FXS there is a functional impairment of the upstream inhibitory input over GSK3 thus making overactive the kinase. Since GSK3 signaling is a central regulatory node for critical neurodevelopmental pathways, understanding the contribution of GSK3 dysregulation to FXS, may provide novel targets for therapeutic interventions for this disease. In this study we used AF3581, a potent GSK3 inhibitor that we recently discovered, in an in vivo FXS mouse model to elucidate the crucial role of GSK3 in specific behavioral patterns (locomotor activity, sensorimotor gating and social behavior) associated with this disease. All the behavioral alterations manifested by Fmr1 knockout mice were reverted after a chronic treatment with our GSK3 inhibitor, confirming the importance of this pathway as a therapeutic target.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Modelos Animais de Doenças , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Camundongos , Camundongos Knockout , Fenótipo
3.
PLoS One ; 16(1): e0244649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33395416

RESUMO

Neuropathic pain is a chronic debilitating condition caused by injury or disease of the nerves of the somatosensory system. Although several therapeutic approaches are recommended, none has emerged as an optimal treatment leaving a need for developing more effective therapies. Given the small number of approved drugs and their limited clinical efficacy, combining drugs with different mechanisms of action is frequently used to yield greater efficacy. We demonstrate that the combination of trazodone, a multifunctional drug for the treatment of major depressive disorders, and gabapentin, a GABA analogue approved for neuropathic pain relief, results in a synergistic antinociceptive effect in the mice writhing test. To explore the potential relevance of this finding in chronic neuropathic pain, pharmacodynamic interactions between low doses of trazodone (0.3 mg/kg) and gabapentin (3 mg/kg) were evaluated in the chronic constriction injury (CCI) rat model, measuring the effects of the two drugs both on evoked and spontaneous nociception and on general well being components. Two innate behaviors, burrowing and nest building, were used to assess these aspects. Besides exerting a significant antinociceptive effect on hyperalgesia and on spontaneous pain, combined inactive doses of trazodone and gabapentin restored in CCI rats innate behaviors that are strongly reduced or even abolished during persistent nociception, suggesting that the combination may have an impact also on pain components different from somatosensory perception. Our results support the development of a trazodone and gabapentin low doses combination product for optimal multimodal analgesia treatment.


Assuntos
Analgésicos/uso terapêutico , Ansiolíticos/uso terapêutico , Gabapentina/uso terapêutico , Neuralgia/tratamento farmacológico , Trazodona/uso terapêutico , Analgésicos/farmacologia , Animais , Ansiolíticos/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Modelos Animais de Doenças , Sinergismo Farmacológico , Gabapentina/farmacologia , Masculino , Camundongos , Nociceptividade/efeitos dos fármacos , Trazodona/farmacologia
4.
Biomed Pharmacother ; 128: 110249, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32470749

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzymeand highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients.


Assuntos
Afeto/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Transtorno Bipolar/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Depressão/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Agressão/efeitos dos fármacos , Anedonia/efeitos dos fármacos , Animais , Transtorno Bipolar/enzimologia , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/psicologia , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/enzimologia , Depressão/fisiopatologia , Depressão/psicologia , Modelos Animais de Doenças , Preferências Alimentares/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Hidrocortisona/sangue , Locomoção/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Autoimagem
5.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023864

RESUMO

Brain aging involves changes in the lipid membrane composition that lead to a decrease in membrane excitability and neurotransmitter release. These membrane modifications have been identified as contributing factors in age-related memory decline. In this sense, precursors of phospholipids (PLs) can restore the physiological composition of cellular membranes and produce valuable therapeutic effects in brain aging. Among promising drugs, alpha-glycerylphosphorylethanolamine (GPE) has demonstrated protective effects in amyloid-injured astrocytes and in an aging model of human neural stem cells. However, the compound properties on mature neuronal cells remain unexplored. Herein, GPE was tested in human hippocampal neurons, which are involved in learning and memory, and characterized by a functional cholinergic transmission, thus representing a valuable cellular model to explore the beneficial properties of GPE. GPE induced the release of the main membrane phospholipids and of the acetylcholine neurotransmitter. Moreover, the compound reduced lipid peroxidation and enhanced membrane fluidity of human brain cells. GPE counteracted the DNA damage and viability decrease observed in in vitro aged neurons. Among GPE treatment effects, the autophagy was found positively upregulated. Overall, these results confirm the beneficial effects of GPE treatment and suggest the compound as a promising drug to preserve hippocampal neurons and virtually memory performances.


Assuntos
Hipocampo/citologia , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Fosfatidiletanolaminas/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Modelos Biológicos , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo
6.
J Med Chem ; 58(22): 8920-37, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26486317

RESUMO

Novel treatments for bipolar disorder with improved efficacy and broader spectrum of activity are urgently needed. Glycogen synthase kinase 3ß (GSK-3ß) has been suggested to be a key player in the pathophysiology of bipolar disorder. A series of novel GSK-3ß inhibitors having the common N-[(1-alkylpiperidin-4-yl)methyl]-1H-indazole-3-carboxamide scaffold were prepared taking advantage of an X-ray cocrystal structure of compound 5 with GSK-3ß. We probed different substitutions at the indazole 5-position and at the piperidine-nitrogen to obtain potent ATP-competitive GSK-3ß inhibitors with good cell activity. Among the compounds assessed in the in vivo PK experiments, 14i showed, after i.p. dosing, encouraging plasma PK profile and brain exposure, as well as efficacy in a mouse model of mania. Compound 14i was selected for further in vitro/in vivo pharmacological evaluation, in order to elucidate the use of ATP-competitive GSK-3ß inhibitors as new tools in the development of new treatments for mood disorders.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Transtornos do Humor/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Anfetamina/farmacologia , Animais , Ligação Competitiva/efeitos dos fármacos , Células CHO , Estimulantes do Sistema Nervoso Central/farmacologia , Cricetinae , Cricetulus , Inibidores Enzimáticos/uso terapêutico , Ensaios de Triagem em Larga Escala , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Atividade Motora/efeitos dos fármacos , Fosforilação , Relação Estrutura-Atividade , Difração de Raios X , Proteínas tau/metabolismo
7.
Eur J Pharmacol ; 477(1): 69-72, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-14512100

RESUMO

Prulifloxacin, a new thiazeto-quinoline derivative with antibiotic properties, was evaluated for cardiac risk both in vitro on the ether-à-go-go-related gene (HERG) K+ channel, and in vivo in the conscious dog monitored by telemetry. HERG current was measured from stably transfected human embryonic kidney (HEK) 293 cells by means of the patch-clamp technique. Application of AF 3013, the active metabolite of prulifloxacin, produced only minor reduction of HERG current amplitude (tail current=-40 mV), producing a maximum blockade of 12.3 +/- 3.3% at the highest concentration tested (335 microM). In comparison, ciprofloxacin also failed to produce a 50% inhibition of HERG current amplitude, although the maximum blockade was greater than that observed with prulifloxacin (47.6 +/- 1.9% at the highest concentration tested (335 microM). In contrast, moxifloxacin blocked HERG current amplitude with an IC50 value of 74.7 microM. Prulifloxacin had no effect on the QTc interval (Fridericia's) following 5 days of repeated oral administration (150 mg/kg/day) in the conscious dog monitored by telemetry. These findings suggest that prulifloxacin is not likely to prolong the QT interval.


Assuntos
Antibacterianos/efeitos adversos , Proteínas de Ligação a DNA/efeitos dos fármacos , Dioxolanos/efeitos adversos , Fluoroquinolonas/efeitos adversos , Piperazinas/efeitos adversos , Bloqueadores dos Canais de Potássio/efeitos adversos , Quinolonas/efeitos adversos , Transativadores/efeitos dos fármacos , Administração Oral , Animais , Antibacterianos/farmacologia , Compostos Aza/efeitos adversos , Compostos Aza/farmacologia , Linhagem Celular , Ciprofloxacina/efeitos adversos , Ciprofloxacina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Dioxolanos/farmacologia , Cães , Fluoroquinolonas/farmacologia , Técnicas In Vitro , Moxifloxacina , Técnicas de Patch-Clamp , Piperazinas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Quinolinas/efeitos adversos , Quinolinas/farmacologia , Quinolonas/farmacologia , Telemetria , Transativadores/metabolismo , Regulador Transcricional ERG
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...